

E. Gomes¹, J. Schneider^{1,2}, K. Verbeken¹, H. Hermann² and Y. Houbaert¹

¹Ghent University, Department of Materials Science and Engineering ²Institut für Metallformung, Technische Universität Bergakademie Freiberg

THERMEC 2009, August 25-29 2009

Introduction 0000	Experimental procedure	Results 000000000	Discussion 000	Thanks
Outline		/		
e u u u u u				
Introduc	tion			
Elect	trical Steel			(

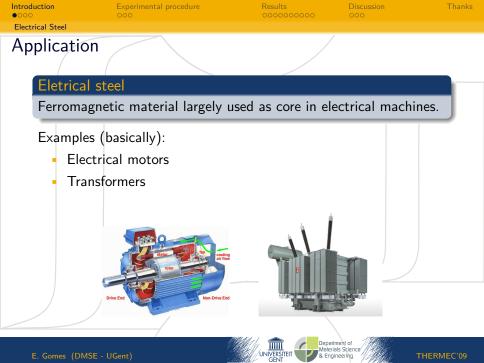
State of the art

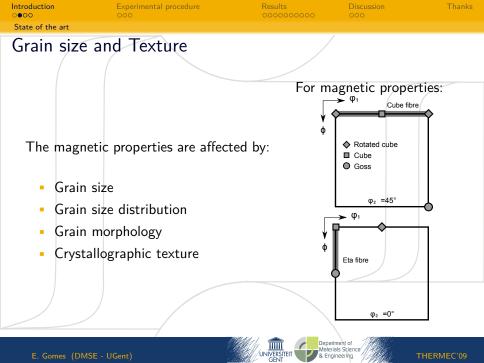
Experimental procedure

Materials and processing

Results

Hot rolling Cold rolling Annealing


Discussion


Influence of Si content

Evaluation of texture evolution during processing

Department o

NIVERSITE

Introduction	Experimental procedure	Results 000000000	Discussion 000	Thanks
State of the art				
Current ki	nowledge			

- The hot band annealing, especially for Fe-Si alloys with phase transformation, leads to an enhanced intensity of the Goss and cube texture as well as of the eta-fibre (higher coiling temperatures after hot rolling).
- A coarse grained hot band structure gives a higher intensity of Goss texture.
- A final hot rolling in the two phase region and ferritic region may also result in better magnetization behaviour of the materials¹.

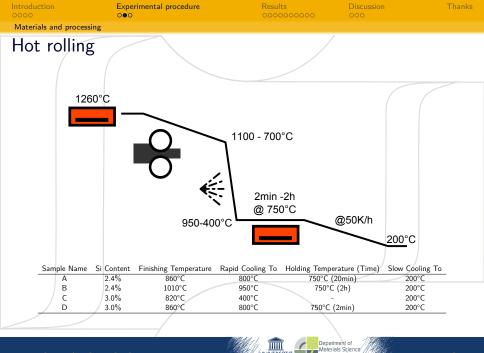
¹work at TU Bergakademie Freiberg and TKS

Introduction ○○○●	Experimental procedure	Results 000000000	Discussion 000	Thanks
State of the art				
Work mot	ivation			

With respect to Fe-Si alloys without phase transformation:

- Little or no literature data are available on the effect of different hot rolling parameters.
- Even more regarding the effect of whole processing conditions(hot rolling, cold rolling and annealing).

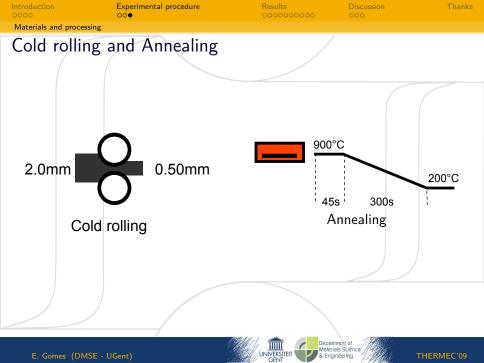
Introduction 0000	Experimental procedure	Results 000000000	Discussion 000	Thanks
	iction ctrical Steel te of the art			
	nental procedure terials and processing			
Col	: rolling d rolling nealing			
Discuss				/
	uence of Si content luation of texture evolu	tion during process	sing	
E. Gomes (D	MSE - UGent)	Materia	ment of als Science ineering	THERMEC'09


Introduction 0000	Experimental procedure	Results 000000000	Discussion 000	Thanks
Materials and	processing			
Sample	es			
-	Samples with 2.4wt%Si and	d 3.0wt% of Si –	\rightarrow no phase	
	transformation			
•	Width of 80mm and a thicl	kness of 2mm (at	fter hot rolling ²	²)

 Fabricated using the four stand high speed hot rolling mill at TU Freiberg

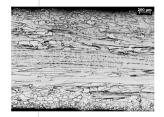
 2 The final thickness was reached after six passes. The reduction was larger than 40% in the first five passes.

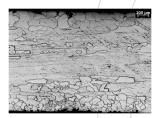
UNIVERSITEIT


Department o

& Engineering

E. Gomes (DMSE - UGent)


THERMEC'09


Introduction 0000	Experimental procedure	Results ●000000000	Discussion 000	Thanks
Hot rolling				
Outline			/	
	iction ctrical Steel te of the art			
	mental procedure terials and processing			
Col	t rolling d rolling nealing			
				/
	uence of Si content aluation of texture evolu			
E. Gomes (E	MSE - UGent)	Mater	rtment of tials Science gineering	THERMEC'09

Introduction	Experimental procedure	Results	Discussion	Thanks
0000	000	000000000	000	
Hot rolling				
<u> </u>			4 - X	

Optical micrograph (samples with 2,4% Si)

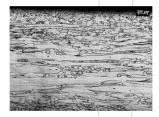
A (FT=860°C, AN \rightarrow 20min@750°C)

B (FT=1010°C, AN \rightarrow 2h@750°C) higher finishing temp and longer annealing time

THERMEC'09

Department o

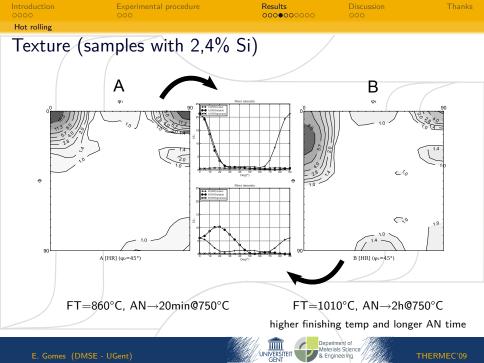
Engineering

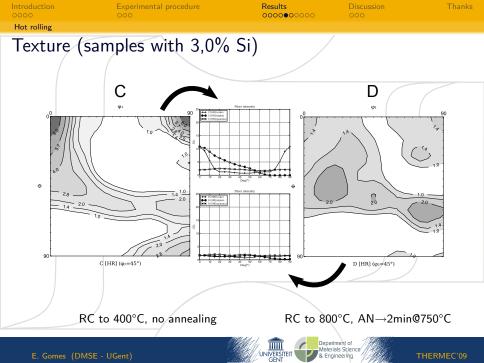


Optical micrograph (samples with 3,0% Si)

C (RC to 400°C)

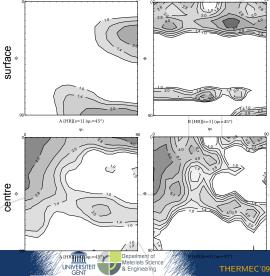
rapid colling after HR and no annealing


D (RC to 800°C, AN \rightarrow 2min@750°C)

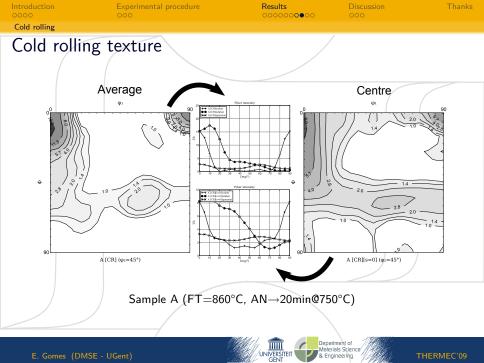

Department of

Engineering

VIVERSITEIT



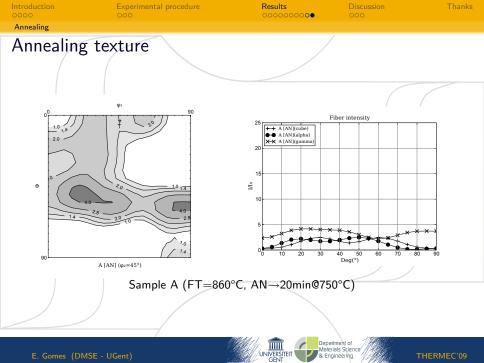
- Shear stress components on surface
- Planar compression in the center


Gradient of texture

Introduction 0000	Experimental procedure	Results ○○○○○●○○○	Discussion 000	Thanks
Cold rolling				
E	duction Electrical Steel tate of the art			
	rimental procedure Naterials and processing			
C	lts lot rolling Cold rolling Annealing			
				/
	nfluence of Si content Evaluation of texture evolut	tion during process	sing	

THERMEC'09

Department of Materials Science & Engineering


THERMEC'09

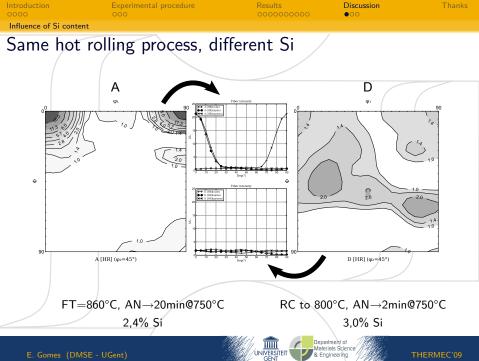
& Engineering

Introduction 0000	Experimental procedure	Results ○○○○○○●○	Discussion TI 000	hanks
Annealing				
	uction ectrical Steel ate of the art			
	mental procedure aterials and processing			
Col	t rolling ld rolling nealing			
Infl	luence of Si content aluation of texture evolutior	during process	ing	

Department of Materials Science & Engineering

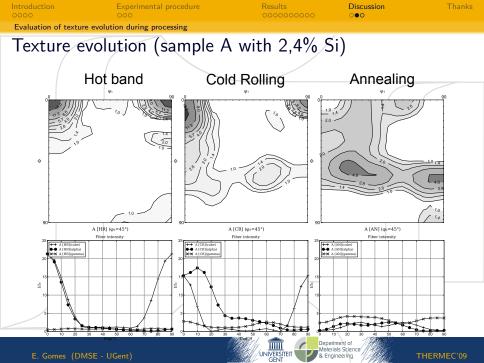
Introduction 0000	Experimental procedure 000	Results 000000000	Discussion	Thanks
Outline				
Ele	ctrical Steel te of the art			
	mental procedure terials and processing			
Col	t rolling d rolling nealing			
Discuss	sion uence of Si content			

Department of Materials Science


ጲ

Engineering

THERMEC'09

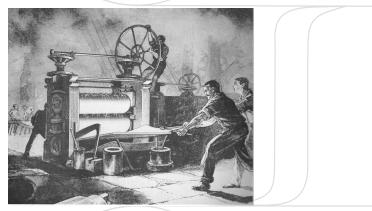

Evaluation of texture evolution during processing

THERMEC'09

Engineering

Introduction 0000	Experimental procedure	Results 000000000	Discussion ○○●	Thanks
Evaluation of texture evo	olution during processing			
Summary				

- Development of texture along the process route (HR, CR and annealing) depends sensitively on the processing parameters and the composition of the alloy.
- For the regarded Fe-Si materials without phase transformation a high intensity of cube texture is desired.
- The understanding of the different process steps on the evolution of cube texture is far from complete.


Introduction 0000 Experimental procedure

Results

Discussion

Thanks

Thank for your attention !!!

Department of Materials Science

& Engineering

Still a lot of work to do!

